domingo, 28 de noviembre de 2010

RADIACIONES DE ALTA FRECUENCIA USADAS EN MEDICINA. LOS RAYOS X.

Definición

Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma.

Son ondas de alta frecuencia. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante, porque al interactuar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga.


Producción de rayos X.

Los rayos X son productos de la desaceleración rápida de electrones muy energéticos (del orden 1000eV) al chocar con un blanco metálico. Según la mecánica clásica, una carga acelerada emite radiación electromagnética, de este modo, el choque produce un espectro continuo de rayos X (a partir de cierta longitud de onda mínima). Sin embargo experimentalmente, además de este espectro continuo, se encuentran líneas características para cada material. Estos espectros —continuo y característico— se estudiarán más en detalle a continuación.

La producción de rayos X se da en un tubo de rayos X que puede variar dependiendo de la fuente de electrones y puede ser de dos clases: tubos con filamento o tubos con gas.

El tubo con filamento es un tubo de vidrio al vacío en el cual se encuentran dos electrodos en sus extremos. El cátodo es un filamento caliente de tungsteno y el ánodo es un bloque de cobre en el cual esta inmerso el blanco. El ánodo es refrigerado continuamente mediante la circulación de agua, pues la energía de los electrones al ser golpeados con el blanco, es transformada en energía térmica en un gran porcentaje. Los electrones generados en el cátodo son enfocados hacia un punto en el blanco (que por lo general posee una inclinación de 45°) y producto de la colisión los rayos X son generados. Finalmente el tubo de rayos X posee una ventana la cual es transparente a este tipo de radiación elaborada en berilio, aluminio o mica.

Archivo:Rayos X.JPG

Esquema de un tubo de rayos catódicos y rayos X

El tubo con gas se encuentra a una presión de aproximadamente 0.01 mmHg y es controlada mediante una válvula; posee un cátodo de aluminio cóncavo, el cual permite enfocar los electrones y un ánodo. Las partículas ionizadas de nitrógeno y oxígeno, presentes en el tubo, son atraídas hacia el cátodo y ánodo. Los iones positivos son atraídos hacia el cátodo e inyectan electrones a este. Posteriormente los electrones son acelerados hacia el ánodo (que contiene al blanco) a altas energías para luego producir rayos X. El mecanismo de refrigeración y la ventana son los mismos que se encuentran en el tubo con filamento.

Los sistemas de detección más usuales son las películas fotográficas y los dispositivos de ionización.

La emulsión de las películas fotográficas varía dependiendo de la longitud de onda a la cual se quiera exponer. La sensibilidad de la película es determinada por el coeficiente de absorción másico y es restringida a un rango de líneas espectrales. La desventaja que presentan estas películas es, por su naturaleza granizada, la imposibilidad de un análisis detallado pues no permite una resolución grande.

Los dispositivos de ionización miden la cantidad de ionización de un gas producto de la interacción con rayos X. En una cámara de ionización, los iones negativos son atraídos hacia el ánodo y los iones positivos hacia el cátodo, generando corriente en un circuito externo. La relación entre la cantidad de corriente producida y la intensidad de la radiación son proporcionales, así que se puede realizar una estimación de la cantidad de fotones de rayos X por unidad de tiempo. Los contadores que utilizan este principio son el contador Geiger, el contador Proporcional y el contador de destellos. La diferencia entre ellos es la amplificación de la señal y la sensibilidad del detector.

Espectros

Espectro continuo

El tubo de rayos X está constituido por dos electrodos (cátodo y ánodo), una fuente de electrones (cátodo caliente) y un blanco. Los electrones se aceleran mediante una diferencia de potencial entre el cátodo y el ánodo. La radiación es producida justo en la zona de impacto de los electrones y se emite en todas direcciones.

La energía adquirida por los electrones va a estar determinada por el voltaje aplicado entre los dos electrodos. Como la velocidad del electrón puede alcanzar velocidades de hasta (1 / 3)c debemos considerar efectos relativistas, de tal manera que

E=\frac{m_{e}c^2}{\sqrt{1-\frac{v^2}{c^2}}}=eV

Los diferentes electrones no chocan con el blanco de igual manera, así que este puede ceder su energía en una o en varias colisiones, produciendo un espectro continuo.

La energía del fotón emitido, por conservación de la energía y tomando los postulados de Planck es

hν = KK'

donde K y K' es la energía del electrón antes y después de la colisión respectivamente.

El punto de corte con el eje x de la gráfica de espectro continuo, es la longitud mínima que alcanza un fotón al ser acelerado a un voltaje determinado. Esto se puede explicar desde el punto de vista de que los electrones chocan y entregan toda su energía. La longitud de onda mínima esta dada por λ = hc / eV,la energía total emitida por segundo, es proporcional al área bajo la curva del espectro continuo, del número atómico (Z) del blanco y el número de electrones por segundo (i). Así la intensidad esta dada por

I = AiZVm

donde A es la constante de proporcionalidad y m una constante alrededor de 2.

Espectro característico

Cuando los electrones que son acelerados en el tubo de rayos X poseen cierta energía crítica, pueden pasar cerca de una subcapa interna de los átomos que componen el blanco. Debido a la energía que recibe el electrón, este puede escapar del átomo, dejando al átomo en un estado supremamente excitado. Eventualmente, el átomo regresará a su estado de equilibrio emitiendo un conjunto de fotones de alta frecuencia, que corresponden al espectro de líneas de rayos X. Éste indiscutiblemente va a depender de la composición del material en el cual incide el haz de rayos X, para el molibdeno, la gráfica del espectro continuo muestra dos picos correspondientes a la serie K del espectro de líneas, estas están superpuestas con el espectro continuo.

La intensidad de cualquier línea depende de la diferencia del voltaje aplicado (V) y el voltaje necesario para la excitación (V') a la correspondiente línea, y está dada por

I = Bi(VV')N

donde n y B son constantes, e i es el número de electrones por unidad de tiempo.

Para la difracción de rayos X, la serie K del material es la que usualmente se utiliza. Debido a que los experimentos usando esta técnica requieren luz monocromática, los electrones que son acelerados en el tubo de rayos X deben poseer energías por encima de 30 keV. Esto permite que el ancho de la línea K utilizada sea muy angosto (del orden de 0.001 Å). La relación entre la longitud de cualquier línea en particular y el número atómico del átomo esta dada por la LEY DE MOSELEY.


Nombre: Gerardo A. Romero L.
Cédula: 17.207.444
Materia: CIRCUITOS DE ALTA FRECUENCIA.
Sección: 1

No hay comentarios:

Publicar un comentario